节点文献

基于概率元学习的矩阵补全预测融合算法

Fusion Algorithm for Matrix Completion Prediction Based on Probabilistic Meta-learning

  • 推荐 CAJ下载
  • PDF下载
  • 不支持迅雷等下载工具,请取消加速工具后下载。

【作者】 齐秀秀王佳昊李文雄周帆

【Author】 QI Xiu-xiu;WANG Jia-hao;LI Wen-xiong;ZHOU Fan;School of Information and Software Engineering,University of Electronic Science and Technology of China;

【通讯作者】 王佳昊;

【机构】 电子科技大学信息与软件工程学院

【摘要】 随着互联网社交媒体规模的飞速发展,利用推荐算法对海量信息进行有效建模筛选和过滤,成为了研究用户行为偏好、热点倾向和网络安全态势等问题的关键。随着深度学习的发展,图神经网络模型在解决推荐系统应用中的密集型图结构数据时取得了较好效果。协同过滤算法作为得到最广泛应用的推荐算法,其利用用户-项目的群体交互数据来预测用户未来的偏好与项目评级。但现有的推荐算法仍面临着数据稀疏和冷启动问题,且缺少对不确定性的良好量化。文中提出了一种基于概率元学习的归纳矩阵补全预测融合算法(MetaIMC),该算法从贝叶斯推断的角度重新对元学习进行表征,构建了稳健的图深度神经网络元学习模型,充分利用数据先验知识提出从稀疏数据中学习新任务的解决方案。首先,MetaIMC可以有效地利用变分贝叶斯推理获得先验分布,缓解元模型任务训练中的不确定性和模糊性问题,进一步提升了模型的泛化能力;其次,在不借助任何用户边信息的情况下,实现新用户推荐的冷启动;最后,在传统矩阵补全及用户冷启动两个场景下,利用Flixster, Douban和Yahoo_music 3个公开数据集对模型的性能进行了评估,验证了MetaIMC在面对传统矩阵补全任务时的有效性,并在冷启动问题上达到了最优的效果。

【Abstract】 With the rapid development of Internet social media, using recommendation algorithms to effectively model and filter massive amounts of information has become the key to predict user behavior preferences, hot spot tendency, network security si-tuation and other issues.At the same time, with the development of deep learning, graph neural network model has achieved good results in solving the dense graph structure data in recommendation system.Collaborative filtering algorithm, as the most widely used recommendation algorithm, uses user-item group interaction data to predict users’ future preferences and item ratings.However, existing recommendation algorithms still face the problems of data sparseness and cold start, and lack of a good quantification of uncertainty.This paper proposes an inductive matrix completion prediction fusion algorithm based on probabilistic meta-learning(MetaIMC),which re-characterizes meta-learning from the perspective of Bayesian inference, builds a robust GNN-meta-learning model, and makes full use of data priors to build solutions for learning new tasks from sparse data.Firstly, MetaIMC can effectively use variational Bayesian inference to obtain the prior distribution, alleviate the uncertainty and ambiguity in the meta-model task training, and further improve the generalization ability of the model.Secondly, MetaIMC can implement new user reco-mmendations and solve the cold start problem without any user side information.Finally, in the two scenarios of traditional matrix completion and user cold start, the performance of the model is evaluated by using three public datasets of Flixster, Douban and Yahoo_music, which verifies the effectiveness of MetaIMC on traditional matrix completion task, and achieves the best performance on the cold start problem.

【基金】 电子科技大学-智小金-智能家居联合研究中心项目(H04W210180);内江市科技孵化和成果转化专项资金(2021KJFH004)~~
  • 【文献出处】 计算机科学 ,Computer Science , 编辑部邮箱 ,2022年07期
  • 【分类号】TP391.3
  • 【网络出版时间】2022-03-24 15:41:00
  • 【被引频次】1
  • 【下载频次】223
节点文献中: 

本文链接的文献网络图示:

本文的引文网络